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Temporal correlations in the brain are thought to have very dichotomous roles. On one hand they are
ubiquitously present in the healthy brain and are thought to underlie feature binding during information
processing. On the other hand, large-scale synchronization is an underlying mechanism of epileptic seizures. In
this paper we show a potential mechanism for the transition to pathological coherence underlying seizure
generation. We show that properties of phase synchronization in a two-dimensional lattice of nonidentical
coupled Hindmarsh-Rose neurons change radically depending on the connectivity structure of the network. We
modify the connectivity using the small world network paradigm and measure properties of phase synchroni-
zation using a previously developed measure based on assessment of the distributions of relative interspike
intervals. We show that the temporal ordering undergoes a dramatic change as a function of topology of the
network from local coherence strongly dependent on the distance between two neurons, to global coherence

exhibiting a larger degree of ordering and spanning the whole network.
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I. INTRODUCTION

Epilepsy is a common neurological disorder characterized
by spontaneous recurrent seizures. Epileptic seizures are gen-
erated by indiscriminate, synchronized bursting of multiple
cortical neurons [1], leading to increased coherence in the
recorded signal between individual neurons as well as
throughout whole networks [2,3]. A wide range of molecular
and cellular mechanisms, including alterations in ion chan-
nels and neurotransmitter receptors, may underlie seizure
generation; however, most abnormalities are thought to result
in increased excitatory transmission mediated by N-methyl-
D-aspartic acid (NMDA), alpha-amino-3-hydroxy-5—
methyl-4—isoxazolepropionic acid (AMPA), or metabotropic
glutamate receptors, or decreased inhibitory gamma-
aminobutyric acid (GABA-ergic) transmission, causing an
imbalance between cortical excitation and inhibition [4]. The
potential network mechanisms proposed to underlie exces-
sive excitatory neurotransmission during epileptogenesis in-
clude loss of inhibitory interneurons and aberrant axonal
sprouting (reviewed in [5]). For example, mesial temporal
lobe epilepsy, the most common form of refractory partial
epilepsy, is associated with aberrant axonal reorganization of
excitatory dentate granule cell axons (mossy fibers) onto
neighboring granule neurons (reviewed in [6]). Evidence
suggests that mossy fiber sprouting leads to abnormal recur-
rent excitation that may be critical for seizure initiation or
propagation in this network [7].

Studies of rodent mesial temporal lobe epilepsy models
have shown that structural network remodeling during epi-
leptogenesis leads to significant increases in axonal length as
compared to intact neuronal networks [8]. We hypothesize
that hyperexcitability induced by sprouting could be one of
the causes of synchronous discharges underlying seizures,
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and show that alteration of the network topology produces a
relatively abrupt transition in phase/lag coherence in the two-
dimensional (2D) small world network (SWN) lattice of non-
identical Hindmarsh-Rose (H-R) models of thalamocortical
neurons [9]. Furthermore, our results indicate that the ob-
served abrupt transition has all the hallmarks of a phase tran-
sition. We also show that around the transition point (in
terms of network topology) as the network switches from
one to the other dynamical regime, the durations of the co-
herent (globally synchronized) phase scales like a power law
having exponent of a=-1.557 indicating that type III inter-
mittency is a dynamical mechanism underlying this global
transition. This latest result coincides with experimental ones
showing similar properties of the distributions of seizure du-
rations [10,11].

Emergence of the concept of small-world networks [12]
has allowed for rigorous study of the properties of
intermediate-structured networks where the connectivities
are neither entirely regular nor entirely random. In those net-
works the rewiring parameter P controls the topology of the
network: when P=0 only local connections are present, and
conversely if P=1 any two neurons in the network can be
connected with the same probability (global connectivity).
Networks exhibiting such structure have been identified in
social as well as biological systems [12,13]. Most studies
have concentrated on their static properties [14-16]. How-
ever, recent work has also focused on the dynamic properties
of SWN, including synchronization. It has been shown that
the linear stability of the synchronous state is linked to the
algebraic condition of the Laplacian matrix defining network
topology [17,18]. It has been reported that this synchronized
state is achieved in SWN more efficiently (in terms of re-
quired network connectivity) than standard deterministic
graphs, purely random graphs, and ideal constructive
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schemes [19]. It has also been shown that small-world net-
works of interconnected Hodgkin-Huxley neurons combine
two features: rapid and large oscillatory response to the
stimulus [20]. Properties of self-sustained activity have also
been studied in the SWN of excitable neurons [21].

II. DEFINITION OF THE STUDIED NETWORK

Here we study the emergence of temporal interdependen-
cies in a (SW) network of coupled nonidentical H-R neurons.
It has been established that periodically driven nonlinear os-
cillators or a system of coupled nonidentical oscillators can
achieve phase or, with stronger coupling, time-lag synchro-
nization [22-27]. The equations of the H-R neurons are

a

. 3 2

Xj=yi—ax; +bxj —z;+ 1o + > (xj—x;),
JillijlISR

)}i:C_dxiz_yi’

Zi=rls(x; = xp) = z;]. (1)

The x,y, and z coordinates represent membrane potential,
fast current, and slow current, respectively. Initially, all neu-
rons within radius R are connected via bidirectional coupling
having strength «. Those connections are then randomly
modified with probability P, with each original bidirectional
connection being treated as two unidirectional connections
that can move independently. The 12 X 12 lattice has periodic
boundary conditions (i.e., torus topology); the lattice con-
stant (distance between nearest neighbors) is set to unity. The
neural parameters in the above equations are a=1.0, b=3.0,
c¢=1.0, d=5.0, r=0.006, s=4.0, and xy=-1.6; K is the num-
ber of actual connections per neuron. The parameter Iy, rep-
resents the amplitude of external current applied to the ith
neuron and determines the frequency as well as type of the
dynamical regime of the neuron (periodic, bursting, and/or
chaotic). The Iy € [2.5,3.4], and were generated at random,
ensuring that they had nonidentical properties.

III. ADAPTIVE MEASUREMENT OF COHERENCE
CHANGES IN THE NETWORK

We use our previously developed measure ([28]) to moni-
tor asymmetric properties of phase or lag synchronization in
the lattice. The measure monitors the properties of the rela-
tive interspike intervals (ISI) between neuronal pairs [Fig.
1(a)]. This allows us to interpret the temporal interdependen-
cies between the coupled units in terms of relative interspike
timings.

Specifically the interspike interval Atf{; of the jth unit with
respect to the ith neuron is calculated as a time difference
between the spike time of the jth neuron and the last spike of
the ith neuron that directly preceeds it, and conversely the
interspike interval A#’ of the ith neuron is calculated as a
time difference between the spike of neuron i and the timing
of the last spike fired by the jth neuron that directly preceeds
it. Thus, if t’i ,té are the spike timings fired by the ith neuron,
#;,t, are the spike timings fired by the jth neuron, and 7
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FIG. 1. (a) Individual distributions are updated for every neuron
using the relative durations of the ISI of every neuron with respect
to the other in the pair (for all the possible pairs in the network).
Specifically, the ISI Atfﬁ; of the jth neuron with respect to the ith
neuron is calculated as a time difference between the spike timing
of the jth neuron with respect to the last spike of the ith neuron, and
conversely the ISI A7 of the ith neuron is calculated as a time
difference between the spike of neuron i with respect to the timing
of the last spike taking place on the jth neuron. The distributions are
updated every time a new spike is generated. (b) Changes in the
phase lag (as measured by CEs) in response to changes in the rela-
tive values of /[ for a system two H-R neurons. (1) Initially the
neurons are uncoupled (a=0) with the same control parameters
(Ip,=3.3). Both of the CEs are high (no phase synchronization is
présent). (2) After 40 s the coupling is introduced (a=1.1). The CE
of both neurons converges to zero indicating complete synchroni-
zation. (3) After another 40 ms the value of Ip,=3.4. The CE with
respect to neuron 1 is high, whereas the other one is zero indicating
phase synchronization with neuron 1 lagging behind neuron 2. (4)
After another 40 s the control parameters are modified so that Iy,
=3.33 and [y,=3.1 reversing that of the previous case. The CE
calculated with respect to neuron 2 is high, whereas the other one is
zero indicating that neuron 2 is now lagging behind neuron 1. (5)
Finally, we return to =0 and any phase relations are abolished. (c)
Changes in the expectivity function for fully connected network of
H-R neurons. The dashed line denotes time at which coupling was
turned on (a=1.1).
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> ¢} >1,>1), then one distribution will be updated with only
one interspike interval (A#'=r5—#,) whereas the second dis-
tribution will be updated twice with (Af/=¢—¢,) and (Ar/
=th—1}). The distributions defined in this manner are comple-
mentary to each other, providing complete information about
possible asymmetric timing interdependencies between the
coupled units.

The ISIs are calculated for every neuron pair in the net-
work separately as new spikes are generated. The distribu-
tions are updated dynamically throughout the simulation, so
that if the interspike interval created at time (t) falls within a
time window described by bin /, the probability assigned to
that bin becomes P,(t)=P,(t—1)+AP; AP is the free param-
eter of the measure and determines its dependence on the
previous ISIs. After every update, the ISI distributions are
renormalized and their Shannon entropy S=-X,P/In P, is
calculated. Since the distributions depend on the relative tim-
ings of spikes of both neurons in the pair, we refer to them as
conditional entropies (CEs). Since the relative ISI are mea-
sured unidirectionally [Fig. 1(a)], the measure provides a
time dependent assessment of the instantaneous interdepen-
dencies between the neurons, while the pairwise comparison
of CEs allows for asymmetric measurement of temporal in-
terdependencies between any two neurons in the network.
Those two characteristics of the measure make it directly
applicable to experimental data.

As a result an N X N conditional entropy matrix is formed
for all neurons in the network, with elements (i,) and (j,i)
providing information about the temporal interdependencies
appearing at a given time of the neural pairs in the network.
In the ideal situation the (S;;,S;;) pair can take four distinctly
different values [Fig. 1(b)]:

* §;;=S;;#0. This indicates that the interspike distribu-
tions of both neurons are fairly wide and they are not phase
locked—their dynamics are uncorrelated.

e §;;=0and §;; # 0. This implies that the ijth distribution
is somewhat narrow whereas the jith distribution is wide.
The two neurons are locked with the jth neuron having a
persistent lag relative to the ith neuron.

e §;;#0 and S;=0. This implies the reverse situation—
that the jith distribution is somewhat narrow whereas the ijth
distribution is wide—the ith neuron has a persistent lag rela-
tive to the jth neuron.

* §;;=S;;=0. Both distributions are peaked. This usually
implies complete synchronization of both neurons.

Measures using relative interspike intervals have been de-
fined before [29] however the advantage of the measure pre-
sented here is the fact that it provides asymmetrical and dy-
namical assessment of changing temporal correlations in the
network.

The lag between two nonidentical neurons established
during phase/lag synchronization depends on their relative
properties (i.e., intrinsic frequencies) [22,23]. The neuron
having higher firing frequency (higher IOI_) will lead that of
the neuron having lower spiking frequency [Fig. 1(b)]. If a
global synchronous state is reached there will be global or-
dering of the lags between the neurons according to their
internal parameters (namely, /).

Thus we can define an expectivity function that compares
the temporal interdependencies in the network to the relative
properties of the neurons (the value of I;)
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FIG. 2. Changes in the total connection length per neuron as a
function of rewiring probability P and the initial connectivity. The
average connection length per neuron increases linearly with the
rewiring probability. This can be indirectly linked to the experimen-
tal result that axonal sprouting leads to significantly increased (up to
30-40 %) axonal length.
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The §;; is the CE of relative ISI of neuron j with respect to
neuron i. Their difference (S;;~S;;) will provide a direct as-
sessment of which neuron in the pair is leading and which
one is lagging. The expectivity function itself measures the
existence of global temporal ordering in the system: namely,
whether the direction of the phase lag (i.e., the order of the
firing within the pair) is in agreement with that predicted
from the relative values of the parameters (1) of the neurons
(if the value from a given pair is predicted correctly the
function is assigned the value w;;=1, and conversely if the
prediction fails w;;=—1). Thus, if E— 1 this indicates that
there is a global order in the temporal sequences of neuronal
activities, whereas if no ordering is established E=0 [Fig.

1(¢)].

IV. RESULTS

We have used the expectivity function to measure proper-
ties of phase synchronization in a sparsely coupled 2D lattice
of N=12 X 12=144 networked H-R neurons. The final topol-
ogy of the network is determined by the rewiring probability
P within a small world network (SWN) paradigm. The re-
wiring probability P was varied from O (full local connectiv-
ity within the radius R) to 1 (random graph). The radius R
=1, 2, 3 defines a cellular distance within which a given
neuron forms connections with other neurons, and thus de-
termines the connectivity fraction (number of neurons con-
nected to a given neuron over the number of all the possible
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FIG. 3. (a) Expectivity function for different values of rewiring
parameter P. For low values of P expectivity values are low indi-
cating a low degree of temporal ordering. Expectivity increases
significantly around P=0.3 to saturate around the value of 0.8 for
higher P. (b) Standard deviation of the expectivity increases dra-
matically around the transition point of P=0.3.

connections to that neuron) in the network (0.028, 0.083,
0.194, respectively). In addition to the changes of statistical
properties of the connectivity, the changes in rewiring prob-
ability also significantly increase the total connection length
per neuron (Fig. 2)—similar to the effect observed experi-
mentally during sprouting [8].

With an increase in the P value, there is a rapid transition
from a disordered state to an ordered state (one where the
network is globally synchronized). Moreover, the observed
transition has the basic properties of a phase transition and
the expectivity function acts as an order parameter.

Figure 3(a) shows the behavior of the expectivity function
for different values of the rewiring probability P. For low
values of P expectivity is low, indicating only residual tem-
poral ordering in the system which may be due to the finite
size of the network. Around P=0.3 the expectivity increases
dramatically and saturates indicating a transition from a tem-
porally disordered to a globally ordered state. At the same
time, the standard deviation [Fig. 3(b)] of the expectivity
increases by almost one order of magnitude around P=0.3.
This is a defining characteristic of a phase transition: Fluc-
tuations of the order parameter near the transition point are
expected to increase dramatically.

Furthermore, we have created histograms of the expectiv-
ity of all neuron pairs in the network as a function of their
relative Euclidean distance on the lattice. This allowed us to
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FIG. 4. Changes in the expectivity as a function of neuronal
distance for different rewiring probabilities. The temporal ordering
remains local for low values of P (expectivity declines as a function
of neuronal distance), whereas global phase synchronization is ob-
tained for P>0.3. Additionally, for high values of P the degree of
phase locking is greater overall than that observed for local phase
synchrony. The graph is formed by binning the values of expectivity
for all neural pairs that have Euclidean distance within the noted
distance range; @=2.0, R=2. Every point on the graph is an average
over four trials.

infer the local as well as global properties of the temporal
ordering in the network and estimate its correlation length.
We have observed that for low values of P the temporal
relations are preserved over only short distances and the ex-
pectivity over longer distances quickly converges to zero.
However, as P increases, global ordering is achieved in the
network (Fig. 4). Moreover, neurons in random networks
(P=1) achieve a significantly higher degree of temporal
locking than that achieved even for short spatial distances in
the networks with low P (Fig. 2). This indicates that the
correlation length in the network increases to infinity.

The abruptness of the transition from local phase syn-
chrony to global phase synchrony depends on the connectiv-
ity as well as the coupling constant. To depict those changes,
we have plotted the average decay ratio of the expectivity as
a function of rewiring probability

Eg(L=1,P=0)—-Eg ,(L=max,P)
ER’a(L= 1,P=0)

DR,a(P) = ’ (4)

where Eg (L,P) is the expectivity averaged over all neu-
ronal pairs having average distance L, computed for the net-
work with rewiring probability P, radius R, and coupling
strength «; due to periodic boundary conditions, the maxi-
mum distance used in the network is 7. Positive values of the
decay (D) indicate local phase synchrony, whereas D=0 in-
dicates global phase synchrony in the network. Negative val-
ues of D(P) indicate that ordering of temporal interdepen-
dencies between distant neurons for large values of P is more
complete than the ordering on the short spatial scale ob-
served for P=0 (see Fig. 5). For lower values of alpha there
is no significant increase in the degree of global ordering
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FIG. 5. Average synchrony decay ratio D as a function of rewir-
ing probability P (see definition in the text). Positive values of D
indicate large decay and thus local phase synchrony; for D=0 there
is no attenuation of synchrony over distance (global synchrony state
is achieved); D <0 indicates an increased degree of phase locking
within the global synchrony state.

over the degree of ordering on shorter spatial scales. When
the coupling is increased there is a significant enhancement
in the phase synchrony in the network (up to 50%).

To better characterize the type of the transition near the
critical point, we investigated the scaling of the durations of
the synchronized (i.e., high expectivity) states near the tran-
sition point P=0.3 (Fig. 6). We have defined those durations
to be the times when the network expectivity is above the
60th percentile of the observed expectivity range. We have
also investigated other threshold values and observed distri-
butions that looked virtually the same. The distribution of the
durations shows a power law scaling for the short “laminar”
bursts, whereas it resembles a multiexponential distribution
for the longer ones. This result is in agreement with [30,31]
where it was shown that an exponential tail will be observed
when additional sources of noise are present in the network.
Here the noise is due to the fact that the coupled neurons are
not identical [32]. Also the finite size of the studied network
might have contributed to this effect.

The exponent of the power law portion of the graph is a
=-1.557 indicating possible type-IIl intermittency at the
transition point. Interestingly, very similar scaling of the ac-
tual seizure duration was observed in experimental and hu-
man data, indicating the same type of transition from inter-
ictal to ictal states [10,11].
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FIG. 6. Scaling of the durations when the network exhibits high
expectivity values near the transition point (P=0.3). The distribu-
tion resembles power law at the short end of the duration and a
combination of multiple exponentials at the long end. The inset is
the magnification and the fit of the region marked by the dashed
box.

V. CONCLUSIONS

In conclusion, we have used our previously developed CE
measure to show that a SW network of coupled neurons un-
dergoes an abrupt transition from a disordered temporal state
to a globally ordered one. The observed transition has the
hallmarks of a phase transition where the rewiring probabil-
ity P is the control parameter and expectivity is the order
parameter. This transition may play an important role in the
emergence of certain types of epileptic seizures, as evidence
suggests that one of the mechanisms underlying hippocampal
seizure generation involves sprouting of glutamatergic pro-
cesses within this injured brain region. We hypothesize that

Rewlring Probabllity
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Average distance between neurons
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FIG. 7. Changes in \ASU| as a function of Euclidean distance
between the neurons. The entropic differences exhibit the same be-
havior as the one observed for the expectivity function. This allows
the direct application of the measure to the experimental data,
where the parameters of the individual neurons cannot be deter-
mined. The |AS; j| were calculated for the same parameters as those
listed in Fig. 3.
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sprouting can cause, over a prolonged period of time, local
changes in network connectivity. Those changes in turn
could alter the dynamical regime of brain functioning into a
parameter regime (near the phase transition point) where
rapid switching from one regime to another could take place.
The intermittent globally ordered regime would correspond
to seizurelike activity.

The critical value of rewiring probability at which the
transition takes place fluctuates around P==0.3-0.4. This co-
incides with the values of P at which the structural clustering
coefficient rapidly decays [12]. Moreover, it has been found
that the clustering coefficient for C. elegans, an example of a
completely mapped neural network, is 0.28, which corre-
sponds to a rewiring probability of P=0.3 (assuming perfect
SWN structure), indicating that the neural systems may form
networks where network structure lies in this critical regime
between local and global synchrony. Creation of spurious
glutamatergic connections in an injured region (sprouting)
may cause the balance to be shifted toward global phase
synchrony, leading to the onset of epileptic seizures.
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It is interesting to note that by far the most connections
are made during brain development. Thus, in view of the
results presented here, an underlying mechanism(s) likely
exists to control large scale brain topology, that does not
permit the brain to reach the seizure-inducing phase but at
the same time optimizes its connectivity for the required
computation [33,34].

An additional advantage of the devised measure is that it
can be applied directly to experimental data. The expectivity
function, which cannot be assessed in the case of real data
because the internal parameters of individual neurons are not
known, can be substituted by pairwise calculation of the av-
erage absolute value of entropic differences between indi-
vidual neurons |AS;;|=|S;;—S;|. The behavior of both mea-
sures is virtually the same (Figs. 4 and 7).
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